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1. INTRODUCTION

The ample contribution of chemometrics to drug
discovery is now well accepted and confirmed by the
growing number of relevant publications. The advent of
chemometrics techniques was motivated by the need to
analyze and understand large volumes of biological and
chemical data. However, at the same time, chemometrics as
a discipline has advanced far beyond data analysis [1]. Novel
concepts and methods are being developed to support many
stages of chemical and pharmaceutical research; from target
identification to lead optimization; from prediction of
pharmacological compound characteristics to development of
new formulations.

The focus of this review is on some of the basic and
widely applied multivariate techniques in drug discovery
research. Several demonstrative examples from the literature
are presented to illustrate possible applications of
multivariate techniques in drug design.

2. THEORETICAL BACKGROUND

The theoretical background is intended as a general
introduction to the chemometrics techniques most
commonly used in cheminformatics. This review is not
exhaustive, its principal aim is to explain some of the
currently used methods and to highlight their principal
advantages.

The multivariate methods introduced in this review are
extensively applied in different fields and are not intended
exclusively for drug design, hence the use of the
terminology universally adopted in statistics. Some of the
key terms used in statistics are defined in Table 1. Table 2
shows the terms most likely to appear in the medicinal
chemistry context.

Multivariate methods can be divided into two main
groups, namely unsupervised and supervised. The
unsupervised methods are largely used in exploratory data
analysis. In these methods all objects are described as input
vectors without the reference to the corresponding data
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target, no a priori knowledge of the class of the samples is
required, Table 2. All objects can be utilized in the analyses,
i.e., there is usually no distinction between the training and
test sets, Fig. (1). The ensemble of input vectors forms the
X data matrix. In the supervised methods, both input vectors
(variables describing each object) and output vectors
(responses or class attribution) are used in the analyses. The
data set is subdivided into a training set and a test set, Fig.
(1).

The training set data should be representative of the
future population from which the new objects are drawn. The
training set must extend over the x-space as widely as
possible. The range of the training set defines application
region of the derived model for future prediction. For
example, if log P is among the chemical descriptors used to
build a model to predict a biological activity, and the log P
values range is limited by 2.0 to 8.0, it will be risky to
estimate the activity for a compound whose log P value is
10.0. It is important to verify that the log P range is
sufficiently broad. If this is not the case extrapolation is
unsafe and can lead to erroneous results.

2.1. Unsupervised Methods

2.1.1. Principal Component Analysis

PCA is an excellent tool to provide an overview of the
data, to detect trends, groupings and outliers (observations
that are substantially different from the others and show
extreme values that may strongly influence certain statistical
analyses), to evaluate correlation among variables and their
relative importance, and to reduce data dimensionality
without a significant loss of information.

The objective of PCA is to find a way of condensing the
information contained in a number of original variables into
a smaller number of principal components (PCs) by
decomposing the data matrix into a ‘structured’ part and a
‘noise’ part [2]. PCA aims to finds a new set of axes (PCs)
such that most of the variability of the data is contained in
the first few dimensions. The PCs are independent and
uncorrelated variables that explain the observed variability.
Each PC is a linear combination of the original variables.
The size of contributions of the original variables depends
on the relative orientation of PCs and the axes of the
original variables, Fig. (2).
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Table 1. Basic Statistical Terms Used in This Mini Review

Name Definition

Multivariate analysis Analysis of multiple variables in a single relationship or set of relationships.

Chemometrics Chemometrics is the science of relating measurements made on a chemical system or process to the state of the system via
application of mathematical or statistical methods. Definition given by the International Chemometrics Society.

Parametric method Parametric methods rely on the estimation of parameters (such as the mean or the standard deviation) describing the distribution
of the variable of interest in the population.

Non-parametric methods Nonparametric methods are used when the parameters of the distribution of the variable of interest in the population are not
known (hence the name nonparametric). In other terms, nonparametric methods do not rely on the estimation of parameters

(such as the mean or the standard deviation) describing the distribution of the variable of interest in the population.

Variance The variance of a variable is a measure of the spread of the variable values. The squared root of the variance (standard
deviation) expresses the measure of the spread in the same unit as the measurements.

Covariance The covariance between two variables is a measured of their linear association. It depends strongly on the units of the variables.

Correlation The correlation between two variables is a unitless, scaled covariance measured.

Categorical variable The categorical variable assumes values that serve as a label; it is also referred as nominal or qualitative variable. ES

Continuous variable The continuous variable can assume any numerical value. For any two values, there is another value between them that the
variable may take on. ES

Training set Set of objects used to derive the model.

Test set Set of objects used to check predictive capacity of the model.

Cross-validation The cross-validation procedure refers to the process of assessing the predictive accuracy of a model in a cross-validation set
relative to its predictive accuracy in the training set from which the model was developed.

Outlier An object that is substantially different from the other objects, that is atypical, i.e. it is represented by extreme values.

Table 2. Possible Correspondences of Generic Statistical Terms in Medicinal Chemistry

General term Example

Object Chemical compound.

Class Therapeutic class; drug like compounds and non drug like compounds

Input vector Set of parameters used to describe a compound.

Output vector In regression analysis a biological activity or a physicochemical property that should be predicted.

In classification analysis a distinct biological activity class label.

Fig. (1). Unsupervised methods employ only a X data matrix while supervised data analysis methods use information from the X data
matrix as well as the data target that can be categorical (classification) or continuos (regression) variables.
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Fig. (3). Score, loading and scree plots. The score plot represents the objects in the new coordinate system, PC space. The loading plot
represents original variables in the PC space, a variable with a high loading for a PC contributes a lot to this PC. For example variable
X3 contributes a lot to PC1 while X2 contributes a lot to PC2. In the scree plot the Eigenvalues of the PCs are plotted against the
number of PCs. This plot can be used to decide how many PCs are significant.

Fig. (2). Geometric interpretation of PCA. The PC1 represents
the maximum variance direction in the data. Each observation
may be projected onto this line in order to get a new coordinate
value in the new coordinate system. PC1 and PC2 form a plane,
which is a 2D window into the multidimensional X space. Each
observation may be projected onto this plane in order to get
new coordinate values in the new coordinate system. The new
coordinate values are known as scores. Figure adapted from
reference [3].

The first principal component (PC1) lies in the direction
that explains the maximum amount of variation in the data

matrix. The second principal component (PC2) describes the
maximum amount of the remaining variation in the direction
orthogonal to the PC1, Fig. (2). Successive principal
components describe decreasing amounts of the remaining
variation and are orthogonal to each other.

The procedure to determine the PCs consists firstly of
the calculation of the appropriately scaled covariance (or
correlation) matrix of the original data; secondly of the
diagonalization of the covariance (or correlation) matrix to
obtain the Eigenvalues (Eigenvalue matrix, Λ ) and
Eigenvectors (loading matrix, P). Finally, the original data
is transformed by using the loading matrix as a rotation
matrix.

Essentially the PCA works by decomposing the data
matrix into the product of two matrices, the score matrix (T)
and the transposed loading matrix (P’), and an additional
residual matrix (E) [4], Eq. 1.

X(n,p) = T(n,a) •  P’(a,p) + E(n,p) Eq. 1

The first term, T •  P’, models the data structure while
the second contains the part of data not explained by the PC
model, the noise.

The score matrix (T) contains information about objects.
Each object is described in terms of its coordinates with
respect to the PCs. The plot representing the objects as
projections onto the PC axes is known as the score plot,
Fig. (3). The loading matrix (P) contains information about
variables. The loading plot shows how the original variables
are linearly combined to form the PCs, Fig. (3).
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Table 3. Principal Hierarchical Clustering Algorithms

Name Definition of distance between two clusters Comments

Single linkage Distance between the closest objects in two clusters (minimum distance). It can identify long, thin clusters.

Complete linkage Distance between the most far-away objects in two clusters (maximum distance). It finds tight, spherical clusters.

Average linkage Distance between two clusters as the average of the distances of all objects in the
two clusters.

It is less sensitive to outliers, tends to
combine clusters with small variance.

Ward’s method Distance between two clusters as the sum of squares between two clusters summed
over all variables. It minimizes the within-cluster variation.

It aims at finding compact, spherical
clusters, of about equal size.

Centroid method Distance between two clusters as the distance between the cluster centroids. A centroid of a cluster is the average value
of the objects contained in the cluster on

each variable

Different methods have been proposed to determine the
number of significant PCs for a given data matrix. The most
commonly used methods take into consideration either the
percentage of variance explained by the PCs, or the
Eigenvalues, i.e., the variance associated with each of the
Eigenvectors [2, 5]. There are two main criteria based on the
Eigenvalues: according to the first, only the PCs with an
Eigenvalues greater than or very close to 1 are included,
while the second is based on the analysis of the shape of the
scree plot (Eigenvalues versus number of PCs), Fig. (3). The
point at which the curve starts to straighten out indicates the
maximum number of PCs to retain.

The PCA is frequently used for data description and
exploratory data structure modeling [4]. It can be applied as
an intermediate step in the more sophisticated data
treatments [6].

PCA can lead to a better understanding of the data
structure and improvement of the data interpretability.

Many softwares running under UNIX, Linux and
Windows are available today to perform PCA calculation.

2.1.2. Cluster Analysis

Cluster analysis is a set of techniques for accomplishing
the task of partitioning a series of objects into groups so that
the objects within one group are more similar to each other
than to those in other groups. Groups identified with these
techniques are referred to as clusters.

There are two basic questions to answer in cluster
analysis: The first one is how the similarity is measured.
The second question is how the clusters are formed.

Similarity can be quantitatively measured using the
concept of the correlation coefficient with higher positive
correlation coefficient values representing greater similarity,
or alternatively using the concept of distance, with smaller
distances representing greater similarity [5].

The most frequently used similarity measure is the
Euclidian distance. Essentially, it is a measure of the length
of a straight line drawn between two objects, Fig. (4). For
example the Euclidian distance between two compounds (s,
t) described by their molecular weight (variable 1) and log P
(variable 2) can easily be calculated by using the formula
shown in Fig. (4). Since the Euclidian distance is quite
sensitive to the scale of variables, the two descriptors should
be properly standardized. Several other options are available.

Some of the widely used alternatives are the Manhattan
distance, based on the absolute differences of the coordinates
of two objects, the Mahalanobis distance (a standardized
form of the Euclidian distance), and the Pearson correlation
coefficient. When objects are described using binary
variables the most commonly used distance is the Tanimoto
distance.

Fig. (4). An example of Euclidian distance between two objects
(s,t) measured on two variables.

As pointed out by Kubinyi [7], it is important to remark
that the definition and quantitative description of chemical
similarity is one of the critical issues in structure-activity
relationship (SAR) studies as well as in combinatorial
chemistry. Compound similarity can be safely defined only
in the chemically closely related series that interact with a
given biological target.

Numerous procedures for forming clusters have been
developed. All clustering algorithms try to maximize the
differences between clusters relative to the variation among
objects within each cluster.

The most commonly used clustering algorithms can be
classified into two general categories: hierarchical and
nonhierarchical.

There are essentially two hierarchical clustering
procedures: agglomerative and divisive. In agglomerative
methods each object starts out as a cluster in itself and
subsequently the two closer clusters (or objects) are
combined into a new cluster. In the divisive methods all
objects initially belong to one large cluster and in
succeeding steps the most dissimilar objects are split off and
made into smaller clusters.

Among the hierarchical methods, agglomerative
clustering algorithms are the most widely used. There are
several variations of agglomerative clustering, which differ
in how the distances are measured between clusters as they
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Fig. (5). A sample tree diagram (dendrogram) illustrating hierarchical clustering.

are constructed. Some of the most commonly used are single
linkage, complete linkage, average linkage and Ward’s
method, see Table 3.

Each of these procedures may produce different results, as
will any algorithm if different distance metrics are
employed. Any cluster analysis is neither true nor false, it
should be largely judged on the usefulness of results [8].

The results of hierarchical clustering are usually presented
as dendrograms, in which the distance along the tree from
one element to the next represents their relative degree of
similarity, Fig. (5).

Among the nonhierarchical methods, the k-means
clustering is the most commonly used algorithm [8]. This is
a relocation algorithm based on the distance of each object
from the centroid of each cluster. The number of k clusters is
pre-fixed by the user. At first all objects are randomly
assigned to one of the k clusters. Then the cluster centroid is
calculated for each cluster. Subsequently, using an iterative
method, objects are moved among clusters. Objects remain
in the new cluster if they are closer to it than to the previous
cluster. Partitioning continues until moving any object starts
to increase the within-cluster variation and decrease the inter-
cluster dissimilarity.

Determining the final number of clusters (stopping rule)
is still a perplexing issue in cluster analysis. There is no
standard and objective procedure, but there are many criteria
and guidelines that have been developed to address this
problem. The simplest and most common type of stopping
rules consists of analyzing some measure of similarity or
distance between clusters at successive steps, for example
monitoring the average distance within a cluster. The final
number of clusters is defined when the similarity measure
exceeds a specified value or when the successive value
between steps undergoes a large decrease. Other stopping
rules attempt to apply statistical rules or adapt statistical
tests, such as the cubic clustering criterion or the likelihood

ratio. There is no solution that appears to be better in all
situations, therefore the combination of theoretical
foundations with the understanding of data is essential to
make a good choice [8].

There is a wide range of applications of cluster analysis
in computational chemistry. These applications may vary
from the selection of representative compounds in a large
chemical library to the evaluation of large amount of data
accumulated in the course of a conformational analysis.

2.1.3. Kohonen Networks, Self-Organized Maps

The neural networks are analytic techniques modeled after
the process of learning in cognitive systems, and the
neurological function of the brain, see also 2.2.3. The neural
network method developed by Kohonen is rather efficient in
modeling the generation of sensory maps in the brain. This
method is designed for clustering problems and operates in
an unsupervised learning mode.

The Kohonen neural network, also termed the self-
organizing map (SOM), is a technique that has been used for
grouping in high dimensional space and projecting onto a
lower dimensional space, usually the two-dimensional space
for visualization purposes.

The aim of Kohonen learning is to map similar objects
to similar neuron positions, identifying similarities between
objects [9]. Training is performed in such a way that objects,
represented by input vectors, with similar properties are
mapped onto the same neurons (or nearest neighbors) in the
two-dimensional space.

A Kohonen network is based on a single layer. This layer
is usually arranged in a plane with its dimensions defined by
the user. The dimensions of a Kohonen network are specified
as x •  y •  n or as x •  y, where x is the number of neurons in
the first dimension of the active layer, y the number of
neurons in the second dimension, and n the dimension of
the input vector (number of variables representing each
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object), Fig. (6). A Kohonen network is characterized by the
x •  y •  n weights. Each neuron has as many weights as there
are input variables, Fig. (6). Before the training starts,
random codes are assigned to all weights. During the
training, all neurons receive the same input and each object
is mapped to the neuron that contains the most similar
weights compared to its input vector.

Fig. (6). A Kohonen network of 24 neurons (6 •  4) characterized
by 72 weights (6 •  4 •  3).

A single cycle of the Kohonen algorithm can be briefly
illustrated as follows. An object described by n variables
enters the network, and the responses of all neurons (each
having n weights) are calculated. The neuron whose output
is the largest, or with the weights most similar to the input
vector is selected. This is the central neuron and is denoted
here as neuron ‘c’. Subsequently the weights of the neuron
‘c’ are adjusted to make them more similar to the input
vector and to improve response of the neuron ‘c’. The
weights of all the neurons in the neighborhood of the neuron
‘c’ are corrected in inverse proportion to the topological
distance from the neuron ‘c’. The next object is input and
the process repeated [9].

All objects of the training set are iteratively fed to the
network, the weights adjusted and the training is stopped
when a pre-defined criterion (a measure of stability) is met.
After training, all the objects of the training set are mapped.
Similar objects are mapped onto the same or adjacent
neurons.

The Kohonen neural networks have been largely used in
drug design for the mapping of molecular surface properties
(see article by Gasteiger in this issue), such as the molecular
electrostatic potential, into two dimensions [10,11] and also
as a clustering procedure [12,13]. Applications of this
method in QSAR studies were fully reviewed elsewhere
[14].

Many software packages running under UNIX, Linux and
Windows are today available to perform neural network
calculation. Here are a few of the major software tools;
SNNS- Stuttgart Neural Network Simulator: A complete
simulator with graphical network editing and visualization
tools. It is well documented, customizable and can run under
several platforms (Unix+X), Netlab Software: A library of
Matlab® functions and scripts based on the approach and
techniques described in the book Neural Networks for
Pattern Recognition by Bishop C.M. [6]. MathWorks:
Neural Network Toolbox A neural network development

environment that requires MATLAB. An extensive,
annotated list can be found on the NEuroNet website
http://www.kcl.ac.uk/neuronet/index.html at King's College,
London, UK.

2.2. Supervised Methods

2.2.1. Classification Methods

The classification methods try to find a relation between
X-variables (predictors) that describe objects and a
qualitative variable that defines classes, Fig. (1). To apply
classification methods, classes should be previously defined
and each object of the training and test sets should be
attributed to a class. The essential difference between
classification methods and cluster analysis is that in the
former the number of classes is known before the analysis
and each object is attributed to a class, while in the latter we
are looking at how objects group together, with the objects
having no predefined labels and the unknown number of
groups (clusters).

2.2.1.1. Discriminant Analysis

Discriminant analysis (DA) tries to find features that
optimally separate objects in different classes. This method
allows to identify boundaries between classes of objects.
These boundaries are linear in the linear discriminant
analysis (LDA), i.e., are represented by lines in two
dimensions, planes in three dimensions and hyperplanes in
higher dimensions. They appear as quadratic functions in the
quadratic discriminant analysis (QDA). The discriminant
function is determined in such a way as to minimize the
classification errors, and is defined as a combination of the
original variables that are able to discriminate the objects in
the respective classes. The effectiveness of DA rests on the
existence of independent variables that differ in the mean
value from one class to another.

There are some key assumptions for the proper
application of DA. The X-variables should correspond to a
normal distribution and should be uncorrelated or
moderately correlated; the variance of a given independent
variable should be unchanged through the different classes,
and the correlation matrices of the independent variables
should be the equivalent for each class. Data not meeting
these requirements can negatively affect the results and cause
problems in the estimation of the discriminant functions. In
these cases, the utilization of other classification methods
such as the k-nearest neighbors or SIMCA should be
considered.

2.2.1.2. k-Nearest Neighbors

The k-nearest neighbors is a nonparametric classification
method, i.e., there are no assumptions on the variables
distribution (Table 1), based on the analogy concept [15]. A
distance matrix for all objects is calculated, usually utilizing
the Euclidian distance, and an integer ‘k number’ is selected.
The ‘k number’ is the number of the nearest neighbor objects
considered in the class estimate of a new object. Indeed, an
unknown object is classified on the basis of the class
memberships of its k nearest neighbors. To determine the
nearest neighbors, the distance matrix of all samples in the
training set is checked for the k shortest distances to the new
object. The new object is then assigned to the class that
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appears the most frequently within the k nearest neighbors,
Fig. (7). If the nearest neighbors are equally distributed
among different classes, the new object is assigned to the
class for which the sum of the distances between the nearest
neighbors belonging to this class and the new object is
minimal.

The ‘k number’ should be large enough to minimize the
probability of misclassification and small relative to the
number of samples so that the nearest neighbors are close
enough to the new object to give an accurate estimate of its
true class. In practice various values of k are tested to find
the best solution.

Fig. (7). A new objects is assigned to the class that appears most
frequently within the k nearest neighbors. For k=5 the new
object is assigned to class C, and for k=6 to class A.

This method usually gives good results, especially if the
separation surface between classes is not linear.

2.2.1.3. SIMCA

The SIMCA (Soft Independent Modeling of Class
Analogy) is based on the hypothesis stating that each class
can be approximated by a PC model with few components,
provided that most of the X-variables express a real
similarity [16]. The philosophy behind this method is to
allow objects to have individualities and to model only the
common properties of the classes.

In the SIMCA approach each class of objects is modeled
separately. Since each class has to support a PC model, this
method is applicable if several objects populate every class.
A complete classification consists of one PC model per
class. A tolerance interval is introduced for each class and a
new object is assigned to a class only if it fits inside the
tolerance interval of that class.

The SIMCA method presents several advantages. It can
be employed in the cases where the number of variables is
larger than the number of objects, it can also easily handle
the correlated variables and allow to represent results
graphically [17].

2.2.2. Regression Analysis

The multivariate regression analysis relates two matrices,
namely the X data matrix containing predictor variables and
the Y response matrix consisting of criterion variables, by
regression and provides a mathematical model, i.e., an

equation describing the nature of the relationship between
these two sets of variables. The multivariate model for X
and Y is mostly used for prediction. We wish to estimate
the response (dependent variable) for a new object described
by a set of predictor variables.

2.2.2.1. Multiple Linear Regression

The multiple Linear Regression (MLR) is intended for
the regression of a single dependent variable (Y-variable) on
a set of independent variables (X-variables). The MLR
formulation implicitly requires that all X-variables are not
intercorrelated, i.e., columns in the data matrix X are
linearly independent. This is a very important point since in
most scientific applications the descriptors chosen to
characterize objects are intercorrelated. Moreover MLR
assumes that the X-values are not affected by errors, i.e., that
they are noise free. In MLR the number of variable should
exceed the number of samples.

MLR is the best method for the truly uncorrelated X-
variables and X-values with insignificant errors. If this is not
the case, the use of other approaches, e.g., PCR and PLS, is
strongly recommended.

2.2.2.2. Principal Component Regression

The Principal Component Regression (PCR) can be
viewed as a two-step procedure. First a PCA is conducted on
the X data matrix to derive the T score matrix, and then on
MLR is carried out on the T score matrix.

In contrast to MLR, the PCR has no problems with
correlated X-variables. In PCR the score vectors are
orthogonal and it can better cope with ‘noisy’ X-variables
since the last PCs containing noise are discarded.

There is still one aspect of PCR that is not optimized.
The decomposition of the X data matrix into PCs is
conducted without taking into account the Y response
matrix. This means that the decomposition is carried out in
a way that does not guarantee the best results for the Y-
variables prediction. This seems to be particularly true if we
try to model more than one response at the time.

2.2.2.3. Partial Least Squares

The Partial Least Squares (PLS) [16,18] is a method for
relating two matrices to each other by a linear multivariate
model; it can be seen as a regression extension of PCA. PLS
finds the linear relationship between a Y response matrix and
X data matrix, Eq. 2.

Y = f(X) +E Eq. 2

PLS uses the variance of the Y response matrix to
directly guide the decomposition of the X data matrix in
such a way so as to obtain an optimal regression.

The main difference between PCR and PLS lies in the
fact that PLS obtains the linear combinations of the original
X-variables called Latent Variables (LVs) under two
constraints: (1) LVs provide the best possible representation
of the structure of the X data matrix and (2) LVs maximize
the fitting between the X and Y matrices. Because of this
direct involvement of the Y matrix in the decomposition of
the X matrix, the PLS approach produces models with fewer
components than PCR and superior interpretation
possibilities.
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PLS works by decomposing the X matrix into the
product of two smaller matrices, similar to PCA, the
loading matrix (P) and the score matrix (T), Eq. 3. The Y
matrix is decomposed into the Y score matrix (U) and the Y
weighting matrix (C), Eq. 4. X, and Y scores are connected
and correlated by the inner relation, Eq. 5, giving Eq. 6.

X = T• P’ + E Eq. 3

Y = U• C’ + F Eq. 4

U = T + H (inner relation) Eq. 5

Y = T• C’ + F Eq. 6

In the PLS algorithm, there is an additional loading
matrix called matrix of weights (W) expressing the
correlation between X and U. The matrix W is used to
calculate T.

A PLS solution can be expressed by Eq. 7 where B is a
matrix of PLS regression coefficients.

Y = XB + F Eq. 7

The best way to examine the information derived PLS
analysis is by graphically plotting the matrices obtained in
the analysis. Some plots are remarkably informative. The
T/U score plot allows to check the correlation between X and
Y obtained in the PLS model for each LV. The plot relative
to the first LV considering the two score vectors t1 and u1 is
the most instructive to visualize the correlation structure
between X and Y. The (T) score plots represent objects in
the space of the LVs, while the loading plots represent
original variables in the space of the LVs. Since the loadings
of a variable indicate how much this variable contributes to
the LVs, variable with high loadings contribute a lot to the
LVs. The weight plots represent the original X variables in
the space of the weights. Since the weights represent how X
variables combine to best fit the Y matrix, variables with
high weights are highly correlated with Y variable(s). The
coefficient plots offer a compact representation of a PLS
model. There is one coefficient plot per Y variable, and it
shows the influence of the X variables on each response, Y
variable.

The predictive power of a model can be evaluated by
cross-validation and/or using a test set. Cross-validation is
an approach for assessing the best model in prediction. It is
useful to establish the best level of complexity (number of
LVs) for a model in order to distinguish between
information and noise. Cross-validation assesses the
probable predictive power of a model by attempting a
prediction of all the objects in a set. Several models are
derived by excluding one (leave-one-out) or more objects
from the analysis until all objects are kept out at least once.
In the most common leave-one-out cross-validation, every
object is eliminated once. For n objects, n models are
derived and n predictions are compared with the real output.
The squared correlation coefficient R2 is a quantitative
measure of the goodness of fit, while the squared cross-
validated correlation coefficient Q2 is used as a quantitative
measure of the goodness of prediction (Eq. 8). In Eq. 8, yi
is the real output value for the object i, y  is the average
value and yi  is the predicted output value derived from a
model in which the object i was excluded. Most often, the
highest Q2 is taken as a criterion for selecting the optimum
number of LVs.

yi - yi

yi - y

i
Σ

Σ
i

2

2
Q2 = 1

Eq. 8

PLS can also be used for classification, PLS-DA [19].
Instead of using a Y response matrix constituted by
continuous variables, a Y matrix composed by dummy
variables, which describe the class membership of each
object, is used in the regression onto the X data matrix. The
‘dummy’ Y matrix has as many columns as classes filled
with ‘1’ and ‘0’. For an object of class k, the kth column
will assume a value of one while the other columns will be
set at zero. Again, linear combinations of the original
variables with good ability to distinguish between classes
are extracted.

2.2.3. Artificial Neural Networks

The flexible nature of Artificial Neural Networks (ANNs)
makes them adaptable to a wide range of problems, ranging
from classification to non-linear regression and cluster
analysis (see Kohonen neural networks).

The theory and general practice of ANNs and their
applications in drug design have been reviewed in depth [9],
therefore our discussion will include only the basic concepts
of ANNs.

Among the different systems of ANNs that utilize the
supervised learning method, the ANN with back-propagation
of errors is applied most frequently in drug design.

Fig. (8). Schematic representation of a node, which is the basic
processing unit in a neural network, and a fully connected
neural network with an input layer, one hidden layer and an
output layer with two nodes.

The basic processing unit in ANN is a node or neuron,
which receives input data, elaborates them and emits an
output in analogy with neural cells, as shown in Fig. (8).
Each connection with another node has an assigned weight
defining the synaptic strength. The weights are adapted so
that for any set of known objects the output values are as



Multivariate Methods Used in Drug Discovery Mini Reviews in Medicinal Chemistry, 2003, Vol. 3, No. 8    839

close as possible to the expected values. A node first
processes the incoming data by summing each input value
multiplied by its respective weight. At the next step this
summed value is transformed by an activation function, also
called transfer function, to generate an output value.

There are three basic types of nodes: input nodes, output
nodes and hidden nodes. An input node receives a single
input variable and transmits it to the network. An output
node receives input and calculates an output or final value.
In the multilayer networks there is a third type of node
enclosed in the hidden layers, which receives input from
different nodes of the previous layer, calculates output and
sends it to other nodes, Fig. (8).

Three essential elements characterize a neural network:
the architecture of the network, the arithmatic operation
inside the node, and the learning method. We will briefly
describe them.

(1) The network architecture is defined by the number of
nodes, the number of layers and connectivity. The
number of input variables determines the number of
input nodes. The number of output nodes is equal to
the number of predictive models (and is often equal
to one), or to the number of classes in a classification
problem. The number of hidden nodes and hidden
layers is determined by trial and error and is limited
indirectly by the number of samples for small data
sets. Indeed it is preferable that the number of
weights to be determined in a network, which
depends also on the number of hidden nodes, is
smaller than the number of data values (n objects
multiplied by the p descriptors). In most cases neural
networks consisting of one hidden layer are used.
Unless differently specified on the basis of some
previous knowledge, the layers of neurons are fully
connected, Fig. (8).

(2) The mathematical function within the node that
translates the summed score of the weighted input
values should provide a final output value that is
non-negative and continuous. Although there are
several functions that satisfy these conditions, the
most widely used is the sigmoid function, which is a
nonlinear function with the S-shaped distribution.

(3) The most common form of learning is back-
propagation of errors. Once the input vector for an
object is processed through the system, the estimated
output value is compared to the actual output value.
If there is a difference between the two values, the
system tries to improve the model in order to
decrease this difference. In the back-propagation of
error approach, the error in the estimated output value
is calculated and then distributed backward through
the system. The weights are changed throughout the
layers, beginning with the weight correction in the
last layer and progressing backwards towards the
input layer.

For supervised learning the objects should be divided
into three sets: a training set, a validation set, which allows
to determine when to stop the training, and a test set for
testing the predictive ability. If the number of objects is
reduced and does not allow the subdivision in three sets, the

test set is also used to establish when the training of a
network is completed. In order to avoid overtraining it is
critical to determine when the training of a network is
completed. An overtrained network may well reproduce the
output for the training set but is not robust when it has to
estimate new data. This phenomenon is mainly due to
parameter redundancy resulting from an overly complex
network. Such network presents a large number of hidden
nodes or multiple hidden layers that are unnecessary.

ANNs are largely used in applied and theoretical
chemistry. There is an increasing number of publications
using ANNs in drug design, different applications utilizing
ANNs to predict properties, such as lipophilicity [20,21]
available on the Internet.

2.2.4. Recursive Partitioning

Recursive partitioning algorithms (RP) can be used both
as classification methods and as non-linear regression
techniques. RP is a powerful approach allowing to uncover
complex structure-activity relationships hidden in large
chemical data sets, and yield interpretable modes [22,23].
RP techniques aim to detect the most statistically significant
features that split the data set into smaller and more
homogeneous subsets, correlating the object descriptors (X-
variables) with dependent variables (Y-variables) or classes
[24,25]. The result of a RP analysis is usually represented
by a tree structure, Fig. (9). Initially, all objects reside in a
node called root. Subsequently, for a binary tree all objects
in a node are recursively split into two statistically distinct
nodes. The statistically most significant split becomes a
branch point in the RP tree and identifies the best rule to
split the data into two subsets. The creation of a new branch
point results in the generation of two subsets. Each subset
has comparable features and similar responses. The process
ends when there are no more statistically significant splits.
Terminal nodes (leaves) appear at the end of each branch.
These nodes correspond to small groups of objects for which
relationships between descriptors and responses have been
developed.

An example of application of recursive partitioning is
given in the review by Alanas Petrauskas.

O n  t h e  h o m e p a g e  o f  C h e m o m e t r i c s
(http://www.acc.umu.se/%7Etnkjtg/chemometrics/softlinks.
html), there is a list of major software packages and also
some data sets. Most of the methods described here are also
available in general statistical packages, for example in the
‘R’ package, which is free and can be downloaded at
http://www.r-project.org/. The ‘mva’ package in R allows to
perform multivariate analysis.

A P P L I C A T I O N  O F  C H E M O M E T R I C S
TECHNIQUES IN MEDICINAL CHEMISTRY

3.1. Problem 1: HCA to Evaluate Conformational
Analysis

Chemical compounds are not rigid, and they exist at each
moment in many different comformers. Conformational
analysis is applied to identify low-energy comformers. Often
a large number of conformers represent an ensamble of
energetically accessible conformations for a particular
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Fig. (9). A small binary decision tree.

compound. Many conformers are very strongly related and
may be combined into common families. Several methods
have been developed to group conformers into such
conformational families [26], among them is cluster
analysis. The parameters used for clustering are torsional
angles or/and distances between important functional groups.
Ermondi et al. [27] performed a conformational study of
cetirizine and hydroxyzine at different protonation states by
quenched molecular dynamics. Three structural parameters
were analyzed for the conformers, expressed as distances
between atoms and standardized by mean centering (new
mean equal to 0) and scaling by the inverse of the standard
deviation (new variance equal to 1). The Euclidian distance
was adopted to calculate diversity between pairs of
conformers. Conformational analysis combined with the
HCA gave a good selection of conformers possibly present
in aqueous solution. These results were confirmed by NMR
measurements.

3.2. Problem 2: Analysis of Anticancer Activity Pattern
Database

Hierarchical clustering algorithms are commonly used in
compound selection and diversity analysis. Many such
applications utilize binary representation of chemical
structure, such as MACCS keys or Daylight fingerprints
[28], and a distance measure, such as Tanimoto coefficients.
These are by far the most common applications in drug
design, although many other interesting applications are
possible. Shi and his colleagues at the US National Cancer
Institute (NCI) [29] analyzed with various statistical
techniques the anticancer activity pattern database generated
by the NCI anticancer drug discovery program. This database
contains the activity values expressed as GI50 (the compound
concentration required to inhibit cell growth by 50%
compared with the controls) for about 70,000 compounds
tested across 60 human cancer cell lines. The PCA, HCA
and other techniques were applied. Analyzing the score plot
of the first two PCs the authors were able to readily identify

outliers and data entry errors. They clustered 25,023
compounds by their in vitro activity patterns across the 60
cell lines, i.e. utilizing 25,023 objects described by 60
variables or by a vector of 60 anticancer activity. As the
distance measure, they used ‘(1-r)’ where r is the Pearson
correlation coefficient between the activity patterns of two
compounds or clusters. The average linkage was selected as
clustering algorithm after different algorithms were
investigated. A data set of 131 agents of known mechanisms
of action was analyzed. Based on the analysis of the
dendrogram, three important observations were possible.
Compounds with similar structure have a tendency to cluster
together. Compounds with similar mechanism of action are
likely to cluster together even when they are structurally
dissimilar. Compounds similar in structure but different in
the mechanism of action are distant from each other. Even
this simple type of analysis can provide precious
information to better understand the molecular pharmacology
of cancer.

3.3. Problem 3: Blood-Brain Barrier Prediction

Recently, much attention in drug design has been
focused on estimating the absorption, distribution,
metabolism and excretion (ADME) properties (see article by
Lombardo et al. in this issue). As part of this novel interest
in ADME prediction, the determination of blood-brain
barrier (BBB) penetration assumes great importance. For
drugs targeted at the central nervous system, BBB
penetration is a necessity, while for drugs targeted at other
sites of action is an unwanted and possible dangerous
feature. Therefore, it is of critical importance for the
pharmaceutical industry to have models that can discriminate
between compounds with high and low BBB permeability.
Numerous publications [30-34] have addressed the problem
of the BBB permeation modeling.

As an example of application of the PCA and PLS, we
briefly describe the models obtained by Crivori [34]. The
training set consisted of a data set of 44 compounds that was
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enlarged to 110 to take into consideration all the
enantiomers of racemic drugs. Indeed, compounds were
characterized by 72 descriptors derived from the 3D
molecular fields (see article by Gasteiger in this issue ) using
VolSurf [35]. A set of 120 compounds (derived from 108
drugs) was used as an external test set. First a PCA was
conducted on the 110 compounds and a model with three
PCs was adopted. The first PC is able to discriminate
between compounds that can penetrate the BBB (BBB+) and
compounds that cannot (BBB−), as can be observed on the
score plot of the first two PCs. The second and third PCs
describe the chemical variability and spatial geometry. After
that the predictive capacity of the PCA model was assessed
using the external test set. Once the PCA model was
obtained, PCA predictions for the test set were made by
calculating the score vector T of the descriptors X for the
new compounds using the loading P of the PCA model.
Thus it was possible to plot the new compounds in the PCs
space of the ‘original’ PCA model. A PLS discriminant
analysis was carried out on the two combined data sets. A
cross-validation procedure was conducted to select the
number of significant LVs and to test the predictive
capacity. The ‘two-LV’ model correctly predicts more than
90% of the enlarged data set (229 compounds since one was
considered an outlier). Moreover the descriptors influencing
the model are related to known molecular factors that affect
the BBB penetration. It is possible to make this observation
by looking at the coefficient plot, which shows the
contribution of all descriptors to the model.

3.4. Problem 4: PLS in CoMFA

Since many of the chemical descriptors commonly used
in computational drug design often have a certain degree of
collinearity, MLR is not the most used technique in
regression analysis. As mentioned above, PCR and PLS are
the best candidates for solving collinearity problem in
regression. Since it has been shown that PLS might be more
efficient than PCR in extracting relevant information from
the X data matrix and getting better results for the Y-
variables prediction, PLS is the most utilized regression
technique in computational chemistry. The main use of PLS
is to model the relationships between theoretical descriptors
and/or measured variables that characterize the structural
variation of a data set and biological responses or
physicochemical properties. As a result of the development
of PLS, the 3D quantitative structure-activity relationships
(3D-QSAR) and in particular the method called the
comparative molecular field analysis (CoMFA) could be
developed and became largely used [36-38].

Lopez-Rodriguez and her colleagues [39] have conducted
a 3D-QSAR study, using the CoMFA method for the 5-
HT(4) receptor of a series of benzimidazole-4-carboxamides
and carboxylates derivatives. A subsequent computational
simulation of ligand recognition has been successfully
applied to explain the binding affinities. The CoMFA model
shows high predictive ability. Steric and electrostatic fields
and solvation energy of this novel class of 5-HT(4) receptor
antagonists constitute the relevant descriptors for structure-
activity relationships. Computational simulation of the
complexes between a benzimidazole-4-carboxamide and a
carboxylate derivative and a 3D model of the transmembrane

domain of the 5-HT(4)R, constructed using the reported
crystal structure of rhodopsin, has allowed to define the
molecular details of the ligand-receptor interaction. Both the
derived computational models have facilitated the
identification of the structural elements of the ligands that
are key to high 5-HT(4) receptor affinity. The combination
of these two computational approaches provides the tools for
predicting the affinity of new related compounds and for
guiding the design of new ligands

3.5. Problem 5: Prediction of Drug Likeness

Recently, several groups have attempted to define drug
likeness [40-42]. Indeed, there is much interest in the
development and application of computational methods for
predicting drug likeness. These methods can be applied to
virtual compounds allowing an early elimination of poor
candidates even before synthesis. I have chosen this topic to
illustrate how some methods outlined in the theoretical
background can be applied.

3.5.1. Solution 1

Sadowski and Kubinyi developed a feedforward neural
network system with back-propagation of errors for
discriminating between drugs and nondrugs [42].
Compounds were chosen from the WDI (World Drug Index)
database and from the ACD (Available Chemical Directory)
database as collection of drugs and non-drugs, respectively.
Both databases were preprocessed to remove unwanted
compounds [42]. The WDI and ACD compounds were
assigned a drug likeness score of 1 for drugs and 0 for non-
drugs. For training, two subsets of 5000 compounds were
randomly extracted from both databases.

To be used as input for ANN, each compound should be
translated into a suitable set of descriptors. Ghose and
Crippen have developed a system of 120 atom type
descriptors for predicting octanol/water partition coefficient
[42]. In the study by Sadowski and Kubinyi, the counts of
92 Ghose and Crippen atom types within a molecule were
used as molecular descriptors. This set of 92 descriptors is
similar to a molecular fingerprint describing each compound
and forming an appropriate input vector for an ANN.

A 92 •  5 •  1 feedforward neural network (92 input units,
5 hidden neurons and 1 output neuron) was trained with a
training set of 10000 compounds. All layers were totally
connected resulting in 465 (92 •  5 + 5 •  1) weights.

One of the possible classification techniques, a two-
category or binary classification can be achieved either by
two output neurons one for each class, or by one output
neuron, which is set to ‘1’ for one class (e.g., drugs) and to
‘0’ for the other (e.g., non-drugs). The authors decide to
work with one output neuron.

The output neuron produces an output score between 0
and 1. Drugs and non-drugs were separated according to a
borderline that was set at the scoring value of 0.5. Once
trained the neural network system was able to correctly
classify 83% of the ACD compounds and 77% of the WDI
compounds. The method is very fast and allows classifying
hundreds of thousands of compounds in a few hours. For the
screening purposes the threshold value separating drugs and
non-drugs was set to 0.3 since the major concern was not to
reject a potentially valuable compound.
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3.5.2. Solution 2

Wagener and van Geerrestein applied a different
classification technique yielding comparable results [41].
They developed a decision tree to distinguish between drugs
and non-drugs using the same databases (WDI and ACD)
and the same chemical descriptors (Ghose and Crippen data
types) as Sadowski and Kubinyi. While offering the same
accuracy of prediction (17.4% error rate in prediction), this
method provides a list of structural features that are
fundamental to the discrimination between drugs and non-
drugs. The outcome of the RPA is a decision tree that
consists of a set of nodes. Each step from the root (first
node) to the leaf (terminal node) corresponds to a rule
defining explicating the presence or absence of a specific
Ghose and Crippen atom type. During training a decision
tree is created. A single descriptor is identified that splits the
entire training set into two similar subsets. Testing all
possible partitioning and choosing the one that provides the
best enrichment of the known classes achieved this. The
resulting subsets are again split into subsets using different
descriptors. At each node, a single feature of the chemical
structure (e.g., presence of a Ghose and Crippen atom type:
oxygen connected to an hydrogen) is tested. The procedure is
continued until no further significant splits can be found. To
improve the accuracy of the classification system, the
authors decided to combine the prediction of several decision
trees in a special voting procedure termed boosting.

Based on the analysis of the decision trees, Wagener and
van Geerrestein were able to identify a few simple features
that can explain the most significant differences between
drugs and non-drugs. 75% of drugs can be correctly
classified by testing the presence of hydroxyl, tertiary or
secondary amino, carboxyl, phenol, or enol groups, while
non-drugs are characterized by their aromatic nature and a
low number of functional groups besides halogens.

3.5.3. Solution 3

Brüstle and colleagues have investigated three different
techniques to address the problem of drug likeness, namely
PCA, RPA and the Kohonen neural networks [12].

The drug data set was derived from the WDI database
using a procedure designed to select only real drugs. The
Maybridge database was selected as non-drug data set,
although it was assumed to contain a subset of compounds
that could make good drugs. All compounds were
characterized by a set of molecular descriptors derived from
AM1 semiempirical calculations. Based on the results of
previous studies, 26 descriptors that were judged to provide
a good description of physical property space were selected.

A PCA was performed on the compounds from
Maybridge database to investigate the dimensionality of the
physical property space. The number of PCs was selected
based on two tests. According to the first test the number of
PCs with Eigenvalues larger than one should be retained.
The second test consists of the analysis of the scree plot
(Eigenvalues of the PCs plotted against the number of PCs).
In the scree plot, the Eigenvalues of the PCs can be plotted
on a line graph. Since the first PCs account for more
variance than the last PCs, the plotted line has a negative
slope. The scree test stipulates that contribution of the

significant PCs should stop when this line flattens out.
Based on these criteria, it was possible to conclude that the
space described by the 26 semiempirical descriptors for the
Maybridge database has 7-8 dimensions.

Looking at the loadings, it was possible to define the
nature of the PCs. The first PC separates compounds on the
basis of their size and shape; the second PC constitutes an
electrostatic description of the positive zones of compounds,
while the third PC represents an electrostatic description of
the negative areas of molecules. The PC4 and PC5
discriminate compounds according to the hydrogen bond
donor and acceptor properties, respectively. The PC6 reveals
the polarity of compounds.

Using histograms of percentage of frequencies of each PC
for the Maybridge and drug data sets it was possible to
identify which PCs can discriminate between drugs and non-
drugs. Only the third PC of the 26 descriptors can
distinguish between drugs and non-drugs and thus can be
used as a numerical index of drug likeness.

It is important to define the nature of all the significant
PCs because it is possible that the first PC does not
represented the property we are interested in, but it a PC that
still explains a certain amount of variance should represented
it.

The set of theoretical parameters was extended from 26 to
66 and RPA was used to identify the descriptors that are
more relevant in the discrimination between drugs and non-
drugs. Following this procedure, it was possible to detect 2
descriptors that were strongly present in the PC3, and a third
one descriptor that was not part of the first 26 parameters.
This parameter is defined as the difference between the
energy of the lowest unoccupied molecular orbital and the
highest occupied molecular orbital and can be related to the
characteristics of the strongest hydrogen bond acceptor. The
authors did not apply a supervised method to discriminate
between drugs and non-drugs since they considered the non-
drug data set to be contaminated by drugs. Instead they used
RPA to select suitable descriptors for the Kohonen neural
network approach. The three descriptors retained from RPA
procedure were used to train a Kohonen network.

Different network architectures were tested and the 100 •
100 •  3 architecture was adopted. As a result of training of
the Kohonen network, a given compound can be
qualitatively classified as drug or non-drug by determining
which neuron the compound is assigned to. Indeed, drugs
form a cluster in the Kohonen map suggesting that this
approach can efficiently recognize potential drugs. As shown
by the results of this study, the Kohonen neural networks are
useful tools for the analysis and visualization of large
multivariate data sets.

4. CONCLUSIONS

The techniques described in this review can provide
useful tools to establish relationships between chemical
descriptors and physicochemical properties or biological
activities. New methods in computational chemistry and
chemometrics are in continuous development to better
understand data structure, improve data classification and
obtain more robust data models.
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There is no single correct way to analyze any data set, as
application of different techniques reveal different aspects of
the data. Unfortunately, there can be incorrect ways to
analyze certain data sets, therefore it is important to consider
the hypotheses assumed by different methods in relation to
the data set we want to analyze. The results of any data
analysis have to be evaluated in their chemical and
biological context. In drug design the results from
multivariate data analysis should be considered as a working
hypothesis to be proven or rejected by the design and testing
of new compounds.

Clearly, development, implementation and correct
application of multivariate methods provide a major
contribution to the long and difficult process of drug
discovery.
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